Dominic Lohr

Dominic Lohr
Wissenschaftliche Mitarbeitende Professur für Didaktik der Informatik
Kontakt
- E-Mail: dominic.lohr@fau.de
Auszeichnungen
- : Best Demo Award (DELFI (GI)) – 2024
- : Best Student Paper Award (ITiCSE 2024 (ACM)) – 2024
Lehrveranstaltungen
Keine passenden Einträge gefunden.Publikationen
- Betzendahl, J., Lohr, D., Berges, M., & Kohlhase, M. (2025). Efficient Exam Correction at Scale: Streamlining Paper-Based Assessments with the VoLl-KOrN System. In Mrohs, L., Franz, J., Herrmann, D., Lindner, K., Staake, T. (Eds.), Digitales Lehren und Lernen an der Hochschule Strategien - Bedingungen - Umsetzung. Bielefeld: transcript.
BibTeX: Download - Grelka, F., Lohr, D., & Berges, M. (2025, June). ALeA : Advancing Personalized Learning with Adaptive Assistance and Semantic Annotation. Paper presentation at Workshop KI und Bildung 2024, Bamberg, DE.
DOI: 10.20378/irb-108296
BibTeX: Download - Lohr, D., Berges, M., Chugh, A., Kohlhase, M., & Müller, D. (2025). Leveraging Large Language Models to Generate Course-specific Semantically Annotated Learning Objects. Journal of Computer Assisted Learning, 41, e13101. https://doi.org/10.1111/jcal.13101
DOI: 10.1111/jcal.13101
BibTeX: Download - Lohr, D., Keuning, H., & Kiesler, N. (2025). You’re (Not) My Type - Can LLMs Generate Feedback of Specific Types for Introductory Programming Tasks? Journal of Computer Assisted Learning, 41, e13107. https://doi.org/10.1111/jcal.13107
DOI: 10.1111/jcal.13107
BibTeX: Download - Lohr, D., Wechsler, L., & Berges, M. (2025, June). Introducing a self-study course for learning textual programming at highschool with APFEL and ALeA. Paper presentation at Workshop KI und Bildung 2024, Bamberg, DE.
DOI: 10.20378/irb-108298
BibTeX: Download
- Kruse-Kurbach, T., Lohr, D., Berges, M., Kohlhase, M., Moghbeli Damaneh, H., & Schütz, M. (2024). Term Extraction for Domain Modeling. In Gesellschaft für Informatik e.V. (Hrg.), Proceedings of the 22. Fachtagung Bildungstechnologien (DELFI). Fulda, DE.
DOI: 10.18420/delfi2024_33
BibTeX: Download - Lohr, D., Berges, M., Chugh, A., & Striewe, M. (2024). Adaptive Learning Systems in Programming Education: A Prototype for Enhanced Formative Feedback. In Gesellschaft für Informatik e.V. (Eds.), Proceedings of DELFI 2024. Fulda, DE.
DOI: 10.18420/delfi2024_57
BibTeX: Download - Lohr, D., Kiesler, N., Keuning, H., & Jeuring, J. (2024). „Let Them Try to Figure It Out First“ – Reasons Why Experts (Do Not) Provide Feedback to Novice Programmers. In ACM (Eds.), Proceedings of the 29th ACM Conference on on Innovation and Technology in Computer Science Education. Milan, IT.
DOI: 10.1145/3649217.3653530
BibTeX: Download
- Berges, M., Betzendahl, J., Chugh, A., Kohlhase, M., Lohr, D., & Müller, D. (2023). Learning Support Systems based on Mathematical Knowledge Management. In Lecture Notes in Computer Science. Cambridge, GB: Cham: Springer.
BibTeX: Download - Kiesler, N., Lohr, D., & Keuning, H. (2023). Exploring the Potential of Large Language Models to Generate Formative Programming Feedback. In Proceedings of the 2023 IEEE ASEE Frontiers in Education Conference. Texas, US.
BibTeX: Download - Kruse, T., Berges, M., Betzendahl, J., Kohlhase, M., Lohr, D., & Müller, D. (2023). Learning with ALeA: Tailored experiences through annotated course material. In Maike Klein, Daniel Krupka, Cornelia Winter, Volker Wohlgemuth (Eds.), INFORMATIK 2023. Designing Futures: Zukünfte gestalten (pp. 395-398). Berlin, DE: Bonn: Köllen Druck+Verlag.
DOI: 10.18420/inf2023_43
BibTeX: Download - Lindner, A., Müller-Unterweger, M., Löffler, P., Lohr, D., & Berges, M. (2023). Von Autonomem Fahren bis Zahnarzt - Vorstellungen von Schüler:innen zu Künstlicher Intelligenz und ihre Integration in den Informatikunterricht. In Lutz Hellmig, Martin Hennecke (Hrg.), Informatikunterricht zwischen Aktualität und Zeitlosigkeit (S. 93-102). Würzburg, DE: Bonn: Gesellschaft für Informatik.
DOI: 10.18420/infos2023-007
BibTeX: Download - Lohr, D., Berges, M., Kohlhase, M., Müller, D., & Rapp, M. (2023). The Y-Model - Formalization of Computer-Science Tasks in the Context of Adaptive Learning Systems. In Proceedings of the IEEE German Education Conference (GeCon). Berlin, DE.
DOI: 10.1109/GECon58119.2023.10295148
BibTeX: Download - Lohr, D., Berges, M., Kohlhase, M., & Rabe, F. (2023). The Potential of Answer Classes in Large-scale Written Computer-Science Exams. In Desel, Jörg; Opel, Simone (Eds.), Proceedings of the Hochschuldidaktik Informatik (HDI) 2021 (pp. 179 - 190). Aachen, DE.
BibTeX: Download
- Jeuring, J., Keuning, H., Marwan, S., Bouvier, D., Izu, C., Kiesler, N.,... Sarsa, S. (2022). Steps Learners Take when Solving Programming Tasks, and How Learning Environments (Should) Respond to Them. In Proceedings of the Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 2. Dublin, IE.
DOI: 10.1145/3502717.3532168
BibTeX: Download - Jeuring, J., Keuning, H., Marwan, S., Bouvier, D., Izu, C., Kiesler, N.,... Sarsa, S. (2022). Towards Giving Timely Formative Feedback and Hints to Novice Programmers. In Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE (pp. 95-115). Dublin, IE: Association for Computing Machinery.
DOI: 10.1145/3571785.3574124
BibTeX: Download
- Lohr, D., & Berges, M. (2021). Towards Criteria for Valuable Automatic Feedback in Large Programming Classes. In Desel, Jörg; Opel, Simone (Eds.), Proceedings of the Hochschuldidaktik Informatik (HDI) 2021 (pp. 181-186). Dortmund, DE.
BibTeX: Download
Projekte
Mittelgeber: BMBF / Verbundprojekt
Projektleitung: , ,
Das Verbundprojekt VoLL-KI entwickelt die Hochschulbildung auf drei Ebenen weiter: Studienprogramme, individuelle Studiumsplanung und Lernfortschritte innerhalb eines Kurses. Auf allen drei Ebenen sollen KI-basierte Systeme unterstützen. Dafür werden auch Daten aus dem Computerbasierten Entscheidungsunterstützungssystem für das Hochschulwesen in Bayern (CEUS) genutzt, die dort bereits vorliegen. Gleichzeitig kann CEUS mit Daten aus dem VoLL-KI-Projekt erweitert werden. Bei der Analyse werden individuelle und gruppenspezifische Daten kombiniert. Das soll dazu beitragen, die Hochschullehre langfristig diskriminierungsfrei zu gestalten. Auf Grundlage der Daten können individuelle Empfehlungen für den Studienverlauf erstellt werden. Studierende können sich dann Gründe für die Empfehlungen anzeigen lassen, Alternativen anschauen und auch Feedback zu den Vorschlägen geben. In pseudonomysierter Form können auch die Studiengangsverantwortlichen auf diese Daten zugreifen. Die Evaluation des Projekts erfolgt mittels Befragungen und Datenanalysen. An dem Projekt sind Wissenschaftler:innen aus der KI, Informatik, Informatikdidaktik und Bildungsforschung von drei benachbarten Hochschulen beteiligt. Der Fokus liegt zunächst auf Studiengängen aus der Informatik, die sich an den drei Standorten unterscheiden: eine große, ingenieurwissenschaftlich orientierten Informatik, einer mittelgroßen, interdisziplinär orientierten Informatik und einer kleinen, anwendungsbezogenen Informatik. Die Ergebnisse sollen dann auf andere Studiengänge der beteiligten Hochschulen übertragen werden.
Mittelgeber: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
Projektleitung: , ,
Die fortschreitende Digitalisierung verändert neben dem Arbeitsmarkt auch die Bildungslandschaft. Mit Mitteln aus dem DigitalPakt Schule werden u.a. im Zuge des Programms BAYERN DIGITAL II gravierende Veränderungen in der Informatikausbildung vorangetrieben, die wiederum neue Herausforderungen auf den verschiedenen Bildungsebenen mit sich ziehen.
Das Projekt CS4MINTS begegnet eben diesen Herausforderungen entlang der Bildungskette und knüpft an bereits im Rahmen des Projekts MINTerAKTIV ges…